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Abstract

Thanks to genome-scale diversity data, present-day studies can provide a detailed view

of how natural and cultivated species adapt to their environment and particularly to

environmental gradients. However, due to their sensitivity, up-to-date studies might

be more sensitive to undocumented demographic effects such as the pattern of migra-

tion and the reproduction regime. In this study, we provide guidelines for the use of

popular or recently developed statistical methods to detect footprints of selection. We

simulated 100 populations along a selective gradient and explored different migration

models, sampling schemes and rates of self-fertilization. We investigated the power

and robustness of eight methods to detect loci potentially under selection: three

designed to detect genotype–environment correlations and five designed to detect

adaptive differentiation (based on FST or similar measures). We show that genotype–
environment correlation methods have substantially more power to detect selection

than differentiation-based methods but that they generally suffer from high rates of

false positives. This effect is exacerbated whenever allele frequencies are correlated,

either between populations or within populations. Our results suggest that, when the

underlying genetic structure of the data is unknown, a number of robust methods are

preferable. Moreover, in the simulated scenario we used, sampling many populations

led to better results than sampling many individuals per population. Finally, care

should be taken when using methods to identify genotype–environment correlations

without correcting for allele frequency autocorrelation because of the risk of spurious

signals due to allele frequency correlations between populations.
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Introduction

Identifying genes underlying adaptation of populations

is a key issue in evolutionary biology (Tenaillon & Tiffin

2008). Such studies are essential for understanding

the mechanisms underlying the evolutionary response to

environments that vary over time and space (Hansen

et al. 2012). The identification of genes targeted by selec-

tion can help disentangle the molecular basis of traits

that respond to ecological factors. Identifying such genes

in domesticated species may provide opportunities for
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the genetic improvement of crops or livestock. The avail-

ability of large genetic data sets means that whole ge-

nomes can be scanned for footprints of natural or

artificial selection without prior knowledge of the genetic

determinants of the traits concerned, particularly in non-

model organisms (Siol et al. 2010).

FST-based tests were among the earliest molecular

genetics methods developed to detect selection

(Lewontin & Krakauer 1973). These tests are based on

the idea that, if local selection occurs at a given locus,

differentiation (assessed by FST) will increase at this

locus compared with what is theoretically expected at

neutral loci. Differentiation-based tests require at least

two subpopulations, but common applications can

include more than two, and potentially many, subpopu-

lations. The seminal work of Lewontin & Krakauer

(1973) used an island model (IM) and many popula-

tions and proposed a simple formula for assessing

selection using the variance of FST. This test was criti-

cized because correlations across populations invali-

dated the estimation of the variance of FST (Nei &

Maruyama 1975; Robertson 1975) and led to a high rate

of false positives. The method was later improved by

using stochastic simulations to obtain the null distribu-

tion of the FST test statistic (Bowcock et al. 1991; Beau-

mont & Nichols 1996). Although based on the same

underlying model, the simulation scheme introduced by

Beaumont and Nichols (BN) dramatically improved the

performance of the test (especially its robustness). An

extension of the Beaumont–Nichols test was designed

to address the case of hierarchically structured popula-

tions, a problem encountered with a wide range of

applications (Excoffier et al. 2009). Vitalis et al. (2001)

followed the same line but focused on a single pair of

populations and included a more complex demographic

history. Such a complex model would not be possible

when considering many populations because of

the large number of parameters to be fixed. Beaumont

and Nichols’s approach was incorporated in a Bayes-

ian framework in which FST is a model parameter

(Beaumont & Balding 2004; Foll & Gaggiotti 2008).

Recently, Bonhomme et al. (2010) improved the original

Lewontin–Krakauer method to account for variations in

population sizes and their inter-relationships under a

pure divergence model described by a phylogenetic

tree.

Other approaches to detect selection are based on the

correlation of genetic variation with environmental data

(Endler 1986). They can be used to detect selection along

gradients or in heterogeneous environments. They use

environmental data and are therefore expected to be

powerful in detecting real correlations between genetic

structure and environmental factors. For binary SNP

markers, logistic regression (LR) appears to be a suitable

approach (Joost et al. 2007). LR was extended to account

for within-cluster autocorrelations (such as a sampling

location) through generalized estimating equations

(GEE; Poncet et al. 2010). In both of the last two

approaches, the underlying generalized linear model

can be extended to account for allele frequencies at each

sampling site (or population). A more sophisticated

regression model was introduced by Coop et al. (2010)

in a Bayesian framework that also includes a correlation

matrix between populations, therefore accounting for

autocorrelation of allele frequencies.

A family of methods was also developed to specifi-

cally address the analysis of clines. In particular, meth-

ods have been devised to detect loci involved in

reproductive isolation or adaptation along linear tran-

sects (Guillemaud et al. 1998; Mullen & Hoekstra 2008;

Teeter et al. 2008). Most of these methods were

designed to address one-dimensional sampling (but see

Novembre et al. 2005). The aim of cline methods is

generally to estimate selective coefficients using a few

candidate genes. We do not discuss these methods here

as we focus on two-dimensional sampling schemes and

genome scans for signatures of selection.

The performance and the rate of false positives of

tests for detecting selection have been addressed in

only a few simulation studies (P�erez-Figueroa et al.

2010; Narum & Hess 2011; Vilas et al. 2012). To date,

correlation-based methods have not been included in

such comparisons, and different models of migration

have not yet been evaluated. Indeed, the pattern of

population structure is expected to affect the perfor-

mance of most of the tests. Besides, self-fertilization is

widespread in nature (Thornhill 1993; Keller & Waller

2002). Even though self-fertilization is expected to

affect several population genetic parameters such as

the level of diversity, linkage disequilibrium and popu-

lation differentiation (Golding & Strobeck 1980; Cum-

mings & Clegg 1998; Liu et al. 1999; Nordborg 2000),

the effect of selfing on the performance of methods to

detect selection has not previously been investigated.

Another important question is how the sampling strat-

egy influences the result (for instance, sampling many

populations with only a few individuals per popula-

tion vs. a few populations with many individuals per

population).

In this study, we used a simulation approach to gen-

erate data sets under spatially, demographically and

selectively explicit models (Epperson et al. 2010). We

used these data sets to (i) compare eight methods to

detect selection in terms of rates of false positives (type

I error) and false negatives (type II error), including

some recently developed methods that have yet not

been tested such as correlation-based methods; (ii) ana-

lyse the efficiency of these methods under different

© 2013 Blackwell Publishing Ltd

1384 S . DE MITA ET AL.



migration models [an IM, a hierarchical IM and a two-

dimensional stepping stone model (SS)]; (iii) determine

the efficiency of the different methods in selfing vs. out-

crossing populations; and (iv) test different sampling

strategies maximizing either the number of populations

sampled or the number of individuals sampled per

population.

Material and methods

Simulations

We simulated data sets using QUANTINEMO (version 1.0.3;

Neuenschwander et al. 2008), a flexible, time-forward,

individual-centred simulation software. We modelled

100 populations arranged in a 10 9 10 regular grid

(Fig. 1). Individuals were diploid and hermaphrodite

and generations did not overlap. Populations had a con-

stant size of 100 individuals each and never became

extinct. Soft selection (population level regulation) was

implemented. For one of the statistical tests, a reference

(outgroup) population was required. We therefore

added a larger (1000 individuals) isolated population

that had never been connected to the others through

migration.

Demographic models. We used a total of six combinations

of demographic parameters. We used two rates of self-

fertilization S: 0 (allogamy, where self-fertilization is

prohibited) and 0.95 (predominantly but not complete

selfing). We used three different migration models

(Fig. 1G–I): an IM, a two-dimensional SS with reflective

boundaries (SS) and a hierarchical model (HM). The

population-based migration rate m was always 0.01 (1%

of individuals migrate to other populations) but the

pairwise migration rate mij from population i to popula-

tion j depended on the migration model. In IM, mij was

m/(k � 1) where k is the number of populations (here

100). In SS, populations were connected to their imme-

diate neighbours and mij was m/2 if the source popula-

tion was at one corner, m/3 if the source population

was at a border but not in the corners and m/4 other-

wise. In HM, mij was mwithin = m 9 f/(d � 1) if i and j

belonged to the same quarter, and mbetween = m 9

(1 � f)/[(k � 1) 9 d] otherwise, where f is the propor-

tion of local migration (0.9), k is the number of clusters

(4) and d is the number of populations per cluster (25).

In all three models, the migration rates to and from the

outgroup population were 0.

Simulation of initial allele frequency at mutation, drift and

migration equilibrium. We sampled initial allele frequen-

cies from a simulated distribution at mutation–drift

equilibrium. To achieve this, we first ran a preliminary

analysis of 106 generations and 100 neutral loci with a

mutation rate of 10�6 per generation and per locus. In

time-forward simulations, it is not trivial to force the

number of mutations occurring to be one per locus.

Because time constraints did not allow an increase in

the number of loci and a decrease in the mutation

rate, we applied a finite-allele mutation model with a

large number of alleles (256) to prevent homoplasy. In

this way, sites at which multiple mutations occurred

were more likely to be identified and loci with exactly

two alleles were highly likely to have undergone only

one mutation. We repeated the analysis using two ini-

tial conditions: either no polymorphism (all loci fixed)

or maximum polymorphism. We ran these simulations

using 100 populations and six different demographic

models as described above. During the simulations,

we monitored the number of fixed loci and the num-

ber of loci with exactly two alleles and observed that

the mutation–drift equilibrium was reached after

roughly 105 generations. As expected, the equilibrium

values depended on the model but not on the starting

conditions. We based our final simulations on the

allele frequencies observed at equilibrium based on

these preliminary results: we randomly selected global

allele frequencies (merging all 100 populations) every

104 generation discarding the first 2 9 105 generations.

Random noise was added to the allele frequencies

sampled. These allele frequencies were used as the

starting point of simulation of selected and neutral

loci.

Simulation of neutral and selected loci. Our final simula-

tions ran for 5000 generations. We monitored the conver-

gence of F-statistics towards theoretical expectations

and found that this number of generations (5000) was

sufficient to reach the migration-drift equilibrium.

For each repetition, we simulated 751 unlinked loci

with a mutation rate of 10�6 per generation and per

locus. To emulate SNP markers, we only selected loci

that exhibited exactly two alleles at the end of the simu-

lation. We randomly selected 10 of these biallelic loci

(as a result, all neutral loci of our data sets were neces-

sarily polymorphic). The last locus was under selection.

We defined a one-locus, fully additive, quantitative trait

model without environmental variance. We set the

number of alleles to two with an initial frequency of 0.5

in all populations.

We performed 100 repetitions of each simulation. So,

for each parameter combination, we consequently gen-

erated 1000 (100 9 10) neutral and 100 (100 9 1)

selected loci, all with exactly two alleles.

Selection. We applied a gradient of selection along the

environment. The selective pressure was the same for
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populations labelled 1–10 and so on (Fig. 1A). With the

two possible alleles denoted A and B, selection

favoured B in populations 1–50 (most strongly in the

first 10) and A in populations 51–100 (most strongly in

the last 10). In any population from line i (i ranging

from 1 to 10), the selective value of the genotypes AA,

AB and BB were, respectively, 1, 1 � si and 1 � 2si. In

si, there was a fixed component (s0) expressing the

overall strength of selection and a component varying

across populations to implement the gradient:

si = s0 9 ei where ei is an ad hoc scaling parameter such

as ei = (5.5 � i)/4.5 for i = 1, 2, …, 10 (ei ranges from 1

to �1). The value e0 for the outgroup (population 101)

is 0 because there is no selection. We used four differ-

ent selection intensities, defined by the maximum selec-

tion effect s0. The values used were 0.05, 0.01, 0.005

A B C

D E F

G H I

Fig. 1 Schematic diagram of the demographic model. (A) Index of all populations and their location in the virtual environment. The

colour gradient symbolizes the selective gradient. (B–F) Sampling schemes. In these five panels, filled circles represent sampled pop-

ulations and the number of sampled genes is in italics. For C, D and E, and F, the numbers correspond to 4, 16 and 24 sampled dip-

loid individuals. (G–I) Illustration of the three models of migration. Lines represent opportunities for migration. In I, the darker

frame represents regions with increased migration rates. For the sake of clarity, only 16 populations are presented in G–I. The out-

group (population 101) is not included and is located in the middle of the gradient, with the same number of samples as the other

populations, and is never connected by migration to other populations.
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and 0. We performed 100 replicated simulations (100

populations, 5000 generations) for each parameter com-

bination, making a total of 2400 simulation runs.

Sampling. QUANTINEMO generates genotype data for all

individuals. We defined five sampling strategies

(Fig. 1B–F). In S1, one individual was sampled per pop-

ulation in all populations for a total of 100 alleles (one

allele per individual). In all four other sampling modes,

a total of 384 alleles were sampled, balancing the

number of populations sampled by the number of sam-

ples per population. In S2, four random individuals

(hence eight alleles) were sampled per population in 48

regularly sampled populations. In S3, 16 random indi-

viduals (hence 32 alleles) were sampled per population

in 12 populations. In both S4 and S5, 24 random indi-

viduals (hence 48 alleles) were sampled per population

in eight populations. In S4, the eight populations were

organized as two transects parallel to the environmental

gradient. In S5, the eight populations comprised four

populations sampled at each extreme of the

gradient. When data from the outgroup population

were required, an identical number of samples was

sampled in this population.

Implementation of methods for detecting selection

We used eight methods (Table 1). In the next two sec-

tions, we describe the implementation, settings and

data samples used. The methods belong to two differ-

ent categories: correlation-based methods that use geno-

type by environmental data and differentiation-based

methods that use a measure of between-population

differentiation (such as FST). For each combination of

demographic parameters, selective pressure and sam-

pling strategy, we generated one data set containing

the 10 neutral loci from each of the 100 repetitions

(1000 neutral loci) and the selected locus from each rep-

etition (100 selected loci), which we analysed using the

eight methods. Note that only sample schemes S2–5

allowed the methods to be compared, because S1 was

only used for the LR method (Table 1), and the method

designed by Excoffier et al. (2009) was applied only to

the hierarchical IM.

For correlation-based methods. We used three variables

(V1–3) to account for varying levels of noise around the

true value. For each row i of the environment (i = 1, 2,

…, 10), we defined the environmental value as

(100 + i + X) where X was drawn randomly and inde-

pendently for each population in a normal distribution

of mean 0 and of standard deviation of either 0 (for

V1), 2 (for V2) or 4 (for V3). Therefore, in V1, the envi-

ronmental variable was supposed to be exactly known

(and was the same for all populations in a given row),

while in V2 and V3, two levels of noise were added.

Logistic regression method. Logistic regression (LR) is a

generalized linear model for binary response data

(McCullagh & Nelder 1989). Joost et al. (2007) applied LR

to genome scans to look for signatures of local adapta-

tion. We used R software (R Development Core Team

2011) to analyse data from all sampling modes and using

all three environmental variables. For samples S2–5, the

fact that several samples were collected in a single popu-

lation was not taken into account. We fitted two models

to data from each locus. In model M1, genotypes were

used as the response variable and the environmental var-

iable was used as the explanatory variable. We used a

logit link model with a binomial error variable for the

regression. The null model (M0) contained only the inter-

cept (ignoring the environmental variable). To assess the

goodness-of-fit of model M1, we used two complemen-

tary tests (Joost et al. 2007): the likelihood ratio test (LRT)

and the Wald test. A locus was significant if pLRT was

<0.05 and if pW was <0.025 or >0.975 where pLRT is the P-

value of the LRT and pW is the P-value of the Wald test.

Generalized estimating equations. Generalized estimating

equations (GEE) are an extension of LR where a correla-

tion matrix is added to the LR model. This matrix

captures correlations between samples taken from a

given population (Poncet et al. 2010). The GEE method

was implemented in R, partially based on code from

the APE package (Paradis et al. 2004). We used all five

sampling modes and all three environmental variables.

A null model M0 was compared to a model M1 account-

ing for the genotype–environment correlation. As the

LRT is not applicable to GEE, we computed a quasi-

likelihood criterion QIC as described in Pan (2001). The

Wald test was computed in the same way as for LR,

and a locus was declared significant if QIC1 < QIC0 and

if pW was <0.025 or >0.975.

Coop, Witonsky, Di Rienzo and Pritchard method. The met-

ric used by Coop, Witonsky, Di Rienzo and Pritchard

(CWDRP) is allele frequencies in populations (Coop

et al. 2010). This method uses a Monte Carlo Markov

chain to estimate the covariance matrix of allele fre-

quencies. We used only neutral loci for this step.

CWDRP uses the covariance matrix to control for

between-population correlations and analyses the

correlation between allele frequencies and the environ-

mental variable in a Bayesian framework. A Bayes

factor was computed to compare the model that

allowed frequency–environment correlations with the

null model. We used samples S1–5 and all three
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environmental variables. We set the number of itera-

tions to 103 for both stages of the procedure. A locus

was declared significant when the Bayes factor reported

by the program was >3, which is a common decision

threshold (Jeffreys 1961).

A pair of Extended Lewontin and Krakauer (sFLK) method.

The method of Lewontin & Krakauer (1973) was

designed to provide critical values using FST as a test

statistic under the IM. One assumption of this test is

that populations are independent. The extension consid-

ered here relaxes this hypothesis and uses a phyloge-

netic tree connecting the populations (Bonhomme et al.

2010). This method is based on a statistic computed

using the overall FST (among all populations). To apply

the test, we used the R and Python code provided by

the authors. We used samples S2–5, and we used the

outgroup population to root the tree. We used control

loci to reconstruct the tree, and we tested all loci using

forward simulations (104 replicates). To avoid sampling

bias, we treated the 100 repetitions independently, each

time reconstructing the tree from 10 neutral loci. A

locus was declared significant if the P-value was <0.025
or >0.975.

Beaumont and Nichols method:. The Beaumont and

Nichols (BN) test is based on coalescent simulations to

generate the distribution of FST conditioned on the

expected heterozygosity under the IM (Beaumont &

Nichols 1996). We implemented this test in a Python

program using the population genetics package EGGLIB

(De Mita & Siol 2012). Simulations featured a single

mutation and an IM with the same number of popula-

tions as the tested data (100). The only nuisance param-

eter was the composite migration parameter M = 4Nm,

which we estimated using the relation M = (1 � FST)/

FST where N, m and FST are the theoretical values of

respectively the size of a single population, the migra-

tion rate and the between-population differentiation.

FST was estimated using the estimator of Weir & Cock-

erham (1984). We generated the joint distribution of the

expected heterozygosity (He) and FST over 104 repli-

cates, and we binned the distribution over 20 regular

He categories. We used FST as a test statistic, and the

test was performed conditionally to the He value of

each locus. A locus was declared significant if the bilat-

eral P-value was <0.05. This test was applied to data

from sampling modes S2–5.

Excoffier, Hofer and Foll (EHF) method. The EHF test is

an extension of the BN test in that it accounts for a HM

of population structure (Excoffier et al. 2009). We thus

applied this test only for data sets generated under the

hierarchical migration model. We also used the Python

Table 1 List of methods

Method and reference Technique Underlying model

Env.

variable Control loci Sampling S1 S2 S3 S4 S5

LR

Joost et al. (2007)

GLM Independence

of observations

Yes No Individuals + + + + +

GEE

Poncet et al. (2010)

GEE Independence

of clusters

Yes No Several individuals

per population

� + + + +

CWDRP

Coop et al. (2010)

MCMC Island model Yes Yes Frequencies � + + + +

FLK

Bonhomme et al.

(2010)

Forward

simulations

Multiple

divergence

model

No Yes Frequencies � + + + +

BN

Beaumont &

Nichols (1996)

Coalescent

simulations

Island model No Yes Frequencies � + + + +

EHF

Excoffier et al. (2009)

Coalescent

simulations

Hierarchical

island model

No Yes Frequencies � + + + +

VDB

Vitalis et al. (2001)

Coalescent

simulations

Pairwise

divergence

model

No Yes Frequencies � � A pair of

populations

of 24

individuals

FG

Foll & Gaggiotti (2008)

RJ-MCMC Island model No No Frequencies � + + + +

BN, Beaumont and Nichols; CWDRP, Coop, Witonsky, Di Rienzo and Pritchard; EHF, Excoffier, Hofer and Foll; FG, Foll and Gag-

giotti; GLM, generalized linear model; GEE, generalized estimating equations; LR, logistic regression; MCMC, Monte Carlo Markov

chain; RJ-MCMC, reversible-jump Monte Carlo Markov chain; VDB, Vitalis, Dawson and Boursot. Columns S1–5 show which sample

scheme was used in combination with the test.
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package EGGLIB to perform coalescent simulations

assuming the correct HM: four quarters of 25 popula-

tions each connected by two rates of migration. The

within-quarter pairwise migration rate was set to

4 9 Ne 9 mwithin and the between-quarter pairwise

migration rate was set to 4 9 Ne 9 mbetween where

mwithin and mbetween have been defined earlier and Ne is

the population size rescaled by the effect of selfing N/

(1 + FIS) where FIS is itself s/(2 � s), N is 100 and s is 0

or 0.95 depending on the model. The simulations were

conditioned on observing only one mutation. We gener-

ated the joint distribution of the expected heterozygos-

ity (He) and FST (computed between populations while

ignoring the presence of four quarters) over 103 repli-

cates, and we binned the distribution over 32 regular

He categories. We used FST as a test statistic, and the

test was performed with respect to each locus’s He. A

locus was declared significant if the bilateral P-value

was <0.05. Samples S2–5 were used for this test.

Vitalis, Dawson and Boursot method. The Vitalis, Dawson

and Boursot (VDB) method considers a single pair of pop-

ulations and allows a demographic model that would not

be computationally achievable with more than two popu-

lations (Vitalis et al. 2001). The model specifies divergence

of two populations from an ancestral population immedi-

ately after a bottleneck. VDB uses two statistics, F1 and F2,

which describe the amount of divergence of each popula-

tion with respect to the ancestral population. To apply the

VDB test, we used the DETSEL program (Vitalis 2012). To

average the effect of selecting a particular pair of popula-

tions, we selected 10 random pairs of populations (sam-

pled without replacement). In each population, a sample

of 48 genes was taken as in sample scheme S3. We applied

the test to each pair independently. The F1 and F2 statistics

(computed from neutral loci) determine the size of the two

populations in the model. The other demographic parame-

ters are specified by the user. We disabled the ancestral

population bottleneck by fixing its duration to 0 and we

used a mutation rate of 10�6 per generation, a divergence

time of 1000 generations and an ancestral population size

of 5 9 104 individuals. We investigated other parameter

values and checked that they resulted in similar or worse

performances, as assessed by the fit of simulated F1 and F2
values to observed values. We performed 106 coalescent

simulations and generated the distribution of test statistics

F1 and F2. We then tested all loci and computed each

P-value as the P-value of the observed F1 and F2 (Fobs)

values. In the case of an SNP, F1 and F2 are discrete. This

P-value was computed as Σ[P(Fi) � P(Fobs)] where P(Fi)

is the frequency of a given pair of F1 and F2, and P(Fobs) is

the frequency of the observed set of values among simula-

tions. For each locus, the test was repeated 10 times (for all

population pairs). In cases where P(Fobs) = 0, the result of

the test was ignored. When merging the results of the 10

tests for a given locus, we applied a Bonferroni correction:

a locus was significant whenever at least one of the P-val-

ues was <0.005, corresponding to a threshold of 0.05 and

10 tests.

Foll and Gaggiotti (FG) method. The Foll and Gaggiotti

(FG) method (Foll & Gaggiotti 2008) extends the

method of Beaumont & Balding (2004). Both methods

assume a model where allele frequencies are expressed

as a function of FST which is itself modelled as the

product of demographic and locus factors. The latter, a,
encompasses the effect of selection. The null hypothesis

is represented by a = 0. FG uses a reversible-jump

Monte Carlo Markov chain scheme to determine the

probability of non-null a (expressed as a Bayes factor

per locus). All neutral and selected loci were tested. We

used the program BAYESCAN version 2.1 and the follow-

ing settings: number of output points: 5 9 103, thinning

interval: 10, burn-in period: 5 9 104, pilot runs: 10, pilot

run length: 5 9 103, prior odds: 10. A locus was

declared significant if the Bayes factor was >3. The test

was applied to samples S2–5.

Results

Allele frequency clines caused by selection

We examined the effect of the selective gradients on allele

frequency at selected loci under each combination of

parameters. For this purpose, we generated plots of

allele frequency clines under the different intensities

of selection and under the different demographic models

(Fig. 2).

The strongest selection setting (s0 = 0.05) resulted in

very steep clines at selected loci. With weaker selection

(s0 = 0.01 and 0.005), clines were less steep but, never-

theless, discernible. Long-range migration allowed by

the IM prevented fixation of the favourable allele in

extreme populations (Fig. 2A, B). In contrast, in the SS,

fixation of the favourable allele was frequent even

under weak selection, and the allele frequency cline

was much steeper in all cases (Fig. 2C). The HM

increased the efficiency of selection due to the matching

of block limits with the switch of selection regime

(Fig. 2D). As a result, the cline was very steep between

the top and bottom blocks regardless of the strength of

selection but almost vanished within blocks. However,

long-range migration was permitted, albeit at a reduced

frequency, which prevented the systematic fixation of

the favourable allele.

Selfing tended to increase the effect of selection

(Fig. 2B). Self-fertilization might hamper selection by

random loss of the favourable allele. However, our
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setting with 100 populations interconnected by migra-

tion and balanced initial allelic frequencies prevented

fixation of alleles at selected loci. On the other hand,

self-fertilization decreases the proportion of heterozyg-

otes. Alleles are therefore almost always exposed as

homozygotes and can be more easily selected. As a

result, non-adaptive alleles that are permanently added

by migration can be more easily removed.

Detecting loci under selection

Effect of the migration model. With the highest level of

selection (s0 = 0.05) and allogamy, all methods produced

fairly good results (Fig. 3). Under the IM, the worst

method (FLK) still detected 92% of true positives and

had a false positive rate of 10.9%. The stepping stone

and HM both caused a major increase in false positive

rates for LR and GEE (especially the SS) and to a lesser

extent for CWDRP (with the HM in particular). The dif-

ferentiation-based methods were not affected. Detection

of true positives was not altered by the migration model,

consistent with the fact that the two latter models of

migration magnified the effect of selection.

Effect of selfing. The reproductive regime had conse-

quences for the detection of selection. Combined with

the IM of migration (Fig. 4), selfing reduced the power

of the differentiation-based methods, except for BN,

which showed a good rate of true positives (93%). Com-

bined with other models of migration, selfing caused a

dramatic loss of power (down to 0% in one case) for

FLK and VDB. As the signal of selection is actually

increased by the combination of selfing and non-IMs,

this loss of power was probably caused by a technical

artefact when applying the methods.

Logistic regression and GEE were also affected by

selfing, exhibiting a consistent increase in false positives

under all migration models in the case of selfing. The

strongest relative increase was observed with the HM

(increase from 9.6% to 24.1% for LR and from 20.1% to

38.5% for GEE). The CWDRP method behaved differ-

ently: selfing caused an increase in the rate of false pos-

itives under the IM, but a slight decrease under the two

other models of migration.

Effect of the strength of selection. We monitored the loss

of power caused by the decrease in selection strength

Fig. 2 Allele frequency cline caused by selection. Each panel

represents the average frequency of allele A (using sample

scheme S1) in the 100 populations, depending on the strength

of selection (s0 = 0 shown as a control). In A, C and D, the

reproduction regime is allogamy.
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Fig. 3 False and true positive rates obtained with s0 = 0.05 and allogamy. The top three panels give the false positive rates of the

seven or eight tests, and the bottom three panels give the true positive rates. IM, island model; SS, stepping stone model; HM, hierar-

chical model. The dotted line at the top of three panels indicates an error rate of 0.05. Results were obtained using sample S2 except

for LR for which S1 was used, FLK for which S3 was used and VDB which was based on pairwise comparisons. EHF appears only

in HM.

Fig. 4 False and true positive rates obtained with s0 = 0.05 and selfing. The top three panels show the false positive rates of the seven

or eight tests, and the bottom three panels give the true positive rates. IM, island model; SS, stepping stone model; HM, hierarchical

model. The dotted line in the top three panels indicates an error rate of 0.05. Results were obtained using sample S2 except for

LR for which S1 was used, FLK for which S3 was used and VDB which is based on pairwise comparisons. EHF appears only in HM.
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under the IM of migration combined with allogamy

(Fig. 5). The effect of selection intensity differed

between the correlation-based methods (LR, GEE and

CWDRP) and the differentiation-based methods. The

former were less affected and still performed fairly well

at the weakest level of selection (s0 = 0.005). CWDRP

appeared to have the best power when using discrimi-

nant selection intensities. The power of other methods

decreased dramatically at s0 = 0.01, especially FG which

did not exhibit a true positive rate higher than that of

the control (s0 = 0). At s0 = 0.005, none of the four

differentiation-based methods showed more true posi-

tives than the control.

Effect of sampling. The effect of sampling (Fig. 6) was

investigated using five sampling schemes (Fig. 1B–F).

They were labelled in order of increasing number of sam-

ples per population (from 1 to 48) and of decreasing

numbers of sampled populations (from 100 to 8). S4 and

S5 differed only in the organization of the eight sampled

populations. LR showed a dramatic increase in the rate

of false positives for all sampling schemes incorporating

more than one sample per population. With allogamy

and the IM, the false positive rate increased from 2.3%

with S1 to 14.2% with S2, 32.2% with S3 and similar

values with S4 and S5. The effect was magnified in the

case of selfing (Fig. 6, right panels). In both allogamy and

selfing models, LR also underwent a marginal loss of

power (98% or 99%) with sampling modes other than S1.

The stepping stone and HM further increased the rates of

false positives, but only marginally, while rates of false

positives were strongly affected with sampling modes S3,

S4 and particularly S5, which dropped to <20% or even

to 0% (data not shown). In contrast to LR, GEE was

designed to cope with multiple samples per population

and prevented the excess of false positives, at least when

passing from S1 to S2 (6.8–7.5% under allogamy, 11.7–

11.1% under selfing, both with the IM). However,

sampling modes with more samples per population

caused an increase in the false positive rate (up to 17%)

but only with the IM with allogamy. The same pattern

appeared with CWDRP, suggesting that it is not caused

by within-population correlations (since CWDRP only

takes the population frequency into account). On the con-

trary, CWDRP generated fewer false positives when

using many samples per population under selfing, proba-

bly due to the higher variance of allelic frequencies in

that case. The effect of sampling on false positives was

moderate with the other methods, which do not allow

the use of S1. The most notable exception was FLK in

which, in the case of allogamy and the IM (but also the

stepping stone and HM, data not shown), S3 reduced the

number of false positives (from 25.2% to 10.9%). Apart

from this case, the effect on false positives was moderate.

Further, in the case of the HM, S2 showed an excess of

false positives with CWDRP, FLK or BN (data not

shown). On the other hand, sampling modes with eight

populations (especially S4) performed badly in terms of

true positives. This was particularly true for FG for which

all sampling modes with <48 populations yielded

dramatically decreased rates of true positives. For a sample

with only eight populations, sampling in the extreme of

the gradient (S5) rather than along the gradient (S4) led

to better true positive rate for FG and BN.

Discussion

Detecting signatures of selection has become a popular

way of identifying loci involved in the response to envi-

ronmental factors and other selective pressures, espe-

cially for non-model species where other approaches,

such as candidate genes, are not easy to develop (Siol

et al. 2010). New statistical tests have been developed to

detect such loci under selection and there is now a

pressing need for a critical assessment of their perfor-

mances. We simulated data sets incorporating neutral

loci and loci affected by a known gradient of selection,

in an environment of 100 populations connected by

migration. We examined several factors susceptible to

affect the performance of tests in detecting selected loci.

The factors investigated were the strength of selection,

the pattern of migration, selfing and the sampling

scheme. We compared the outcome of eight methods,

three based on the correlation between genotypes and

environmental variables (LR, GEE and CWDRP) and

Fig. 5 Effect of the intensity of selection on true positive rates.

Results are for the island model of migration, allogamy and

using sample S2, except for LR for which S1 was used, FLK for

which S3 was used and VDB, which is based on pairwise

comparisons. Black symbols represent correlation-based

methods. White symbols represent model-based methods.
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five that investigate genetic differentiation between

populations (FLK, BN, EHF, VDB and FG).

Comparison with other simulation studies

Our analysis showed that FG has very low rates of

false positives and a good power of detection of actual

selection under several demographic models with

many populations. This confirms the results obtained

by P�erez-Figueroa et al. (2010) and Vilas et al. (2012).

The first study used simulated AFLP data and a

pair of populations exhibiting a differentiation of

FST = 0.025, 0.1 and 0.3. In our simulations, the esti-

mated value of FST ranged from 0.2 to 0.55 (depending

on the demographic model). P�erez-Figueroa et al.

(2010) used a selection of strength s0 = 0.25, 0.025,

0.0025, whereas we used 0.05, 0.01 and 0.005 (although

the values cannot be directly compared due to differ-

ences in the models). They observed that the power of

VDB collapsed for a subset of parameter combinations,

in agreement with our results. The power of all meth-

ods tended to decrease with increased differentiation

and, as expected, with decreasing intensity of selection.

This explains why, when we decreased the level of

selection, we rarely detected any true positives in our

system (which matches their highest level of differenti-

ation). However, we showed that even in these unfa-

vourable conditions, correlation-based methods were

sufficiently powerful. The second study (Vilas et al.

2012) specifically investigated the performance of BN

and FG methods in detecting neutral markers linked

to selected loci. They also used a system with two

populations and investigated a range of migration

rates centred on 0.01, which also confirmed the good

performance of FG. One notable difference between

our study and these two studies is that they showed

that the methods tested (BN and VDB, and BN and

FG, respectively) resulted in a large excess of false

positives that needed to be corrected using a false

discovery rate (FDR) control procedure (Benjamini &

Hochberg 1995). In contrast, we only observed a mod-

erate excess of false positives, possibly as a result of

(i) our system, which used a large number of popula-

tions which matches the underlying model of the BN

Fig. 6 Effect of sampling with s0 = 0.05, island model of migration. The top two panels show the false positive rates, and the bottom two

panels the true positive rates. The two left panels present results obtained under allogamy and the two right panels under selfing. The dot-

ted line in the two top panels indicates an error rate of 0.05. Two tests are not shown: EHF, which was applied only to hierarchical models

and on which the sampling modes had little effect (data not shown) and VDB, which was only applied to pairwise comparisons. S1 is

applicable only with LR and GEE.
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method better, (ii) our implementation of the BN

method for SNP data and (iii) our technique of inte-

grating several pairwise tests for VDB with correction

for multiple testing. One conclusion of the study of

P�erez-Figueroa et al. (2010) was that combining differ-

ent methods in a multitest approach did not improve

results, chiefly because the three tests (BN, VDB and

FG) yielded similar results. However, these methods

are based on similar principles, and better results can

be expected when complementary methods exploiting

different sources of information are used together: typ-

ically, differentiation-based and correlation-based

methods (Manel et al. 2009).

Another recent study compared the performance

of four differentiation-based tests (Narum & Hess

2011): the BN method, EHF FG and a more descrip-

tive approach based on global FST histograms (e.g.

Luikart et al. 2003). Narum & Hess (2011) used a

model with 10 populations arranged in a linear SS

and two regimes of selection: one including a linear

gradient matching the direction of the stepping

stone migration (and thus matching our SS) and one

where the gradient of selection was randomized

with respect to the model of migration. As before,

FG was the method with the lowest false positive

rate, which confirms that this method presents very

low false positive rates over a wide range of condi-

tions. Similarly, the authors found that BN was as

powerful as FG (provided that selection was strong)

although it generated more false positives, as we

also found with other demographic models.Narum

& Hess (2011) found that EHF did not perform well,

which is easily explained by the mismatch between

the simulation model and the model assumed by the

test. This suggests that EHF will be most efficient

when data actually exhibit signatures of hierarchical

structure.

Running time

The running time of a statistical method is a potentially

crucial factor when dealing with very large data sets.

We found that LR and GEE were considerably faster

than the other methods tested (requiring a few min-

utes). All other tests required substantially more time

(up to many hours). Compared to LR and GEE, the per-

formance gain offered by CWDRP thus comes with a

significant cost in computing time.

Factors affecting performances of tests

Several factors are likely to influence the choice of a

method to detect signatures of selection: availability of

environmental data suspected to induce variance in

fitness, genetic structure between the populations stud-

ied and sampling strategy. In the following, we discuss

how each of these factors affects the performance of the

methods we tested.

Using environmental data. The correlation-based methods

LR, GEE and CWDRP use environmental data to detect

selection. It should be noted that, in the results pre-

sented above, the environmental variable was known

without error, which might not be the case in real-life

situations. The effect of blurring the signal by adding

random noise around the true value had the expected

effect of reducing the power of all three methods to

detect selected loci (Fig. S1, Supporting Information)

but it should be noted that the effect was marginal for

the highest selection intensity, and that, for example,

CWDRP exhibited a fairly decent rate of true positives

at s0 = 0.01 with the most blurred variable (61%). In our

study, correlation-based methods consistently exhibited

sufficient power to detect true selected loci, whatever

the demographic model and even with the lower levels

of selection. Nevertheless, LR and GEE methods

appeared to generate slightly more false positives under

standard conditions (allogamy and IM).

On the contrary, differentiation-based methods are

based on the principle of rejecting a null model (detec-

tion of outliers). Consequently, they do not enable iden-

tification of the factor that causes the selective pressure.

This may be an advantage when no environmental vari-

able is available. In our study, they were less powerful

than correlation-based methods. In particular, with the

lowest level of selection (s0 = 0.005), all the methods

failed to detect selection (there was no difference

between s0 = 0.005 and the control s0 = 0).

Deviations from the island model. We found that LR and

GEE methods had higher false positive rates under

deviations from the IM, particularly under patterns of

isolation by distance. Such patterns probably resulted in

spurious correlations of allele frequencies with the envi-

ronmental variable. As a result, LR and GEE displayed

a marked increase in the false positive rate under the

stepping stone and HM. In practical applications, the

use of a large number of neutral loci associated

with a procedure to control false discovery is advisable.

CWDRP was rather resistant, albeit not completely, to

these effects and offered a satisfactory compromise

between high rates of true positives and low rates of

false positives. However, CWDRP works at the

population level and requires estimation of allele fre-

quencies, while LR and GEE can deal with genotype

data and do not require extensive sampling at each

location. Furthermore, the two latter methods can be

extended to analyse relatedness among populations
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more accurately, for example using explanatory vari-

ables such as Moran’s eigenvector maps, which use the

spatial variation of data to control for spatial autocorre-

lation (Manel et al. 2010a,b; Schoville et al. 2012).

FG and (to a lesser extent) BN appeared to be robust

to deviations from the IM (which is the underlying

hypothesis of both tests). FG clearly requires a large

number of populations, but we showed that 48 popula-

tions were sufficient to detect strong instances of selec-

tion. FG was the method with the lowest rate of false

positives and was powerful under the best set of condi-

tions (highest strength of selection and allogamy). How-

ever, FG lost a lot of power under weaker selection or

when fewer populations were used (eight populations

instead of 48).

With the HM, the BN test was essentially robust

despite assuming a standard IM. The false positive rate

was not higher with BN despite the deviation from the

assumed IM (Figs 3 and 4, see also Fig. S2, Supporting

Information). Instead, EHF appeared to be more power-

ful than BN in this case with lower selection intensity

(Fig. S2, Supporting Information, third and fourth

panels), although mostly for sampling modes S3–5).

Excoffier et al. (2009) investigated cases in which

between-population differentiation was stronger than

between-cluster differentiation, and cases in which the

reverse was the case. They found that analysing such

data sets using the BN method (assuming a finite IM)

led to inflated rates of false positives when between-

cluster differentiation was stronger than within-cluster

differentiation. The parameters of the HM we used led

to stronger between-population differentiation than

between-cluster differentiation, a situation to which BN

might not be the most sensitive. Therefore, exacerbated

between-cluster differentiation can invalidate the results

of tests based on the IM. Such patterns can be predicted

based on the biology of the species and otherwise can

be detected from the data.

Deviations from the model assumed by FLK and VDB. FLK

and VDB both underwent a striking loss of power

under a few parameter combinations. VDB failed to

detect any true positives under certain conditions: (i)

selection was strong enough to frequently fix alternative

alleles in the two populations being compared, and (ii)

the demographic model caused sufficient population

differentiation to render neutral allele fixation predict-

able. Under these conditions, simulations frequently

resulted in the fixation of neutral alleles and yielded a

non-significant test for selected alleles. This problem

was partly caused by the limited amount of information

conveyed by a single SNP marker assessed in only two

populations, as VDB was originally designed for a

higher number of alleles. One possible solution would

be to merge information from adjacent markers to build

more complex and refined genotypes, either by recon-

structing haplotypes or by performing genome scans

making use of linkage between markers. A similar

problem occurred with FLK when populations on either

side of the gradient inflection point were fixed or nearly

fixed with respect to the allele concerned. In this case,

the FLK statistic was within or close to the limit of the

simulated values, yielding poor power estimates despite

overwhelming evidence. It should be noted that VDB

and FLK both allow for complex models of population

history, far beyond those we simulated (population

divergence with a bottleneck in the ancestral population

for VDB and populations structured according to a

phylogenetic tree). For example, FLK was designed for

populations that diverged along a phylogenetic tree. In

that case, this test was shown to perform better when

information concerning the tree is taken into account

(Bonhomme et al. 2010).

Population structure. Logistic regression does not

account for the correlation between samples collected in

the same population. Although GEE was designed to

cope with the effect of within-population autocorrela-

tion, the performance gain was partial with our simula-

tion setting. GEE allows for a variety of models for

within-population structures but further investigation is

needed to understand their effects. However, we

showed that strong within-population autocorrelations

led to more contrasted performances by LR and GEE.

We performed coalescent simulations with a lower

migration rate scaled parameter M = 4Nm = 0.01, 0.5

and 4 (corresponding to m = 0.000025, 0.00125 and 0.01

in our forward simulation scheme; m = 0.01 is the value

used in our main simulations). The results of these

complementary simulations showed that GEE had a

lower rate of false positives than LR only if migration

was low (M = 0.01 and 0.5) under the IM (Fig. S3, Sup-

porting Information). The SS caused a major increase in

false positives with both the LR and GEE methods. This

is because this model creates a spurious correlation

between allele frequency and the environmental vari-

able, as discussed earlier. GEE was severely affected,

especially when the migration rate was low, but tended

to outperform LR when the number of samples per

population was high. LR performed best when only a

few samples were collected per population. LR was

almost always better than GEE for the highest rate of

migration. Below a certain migration rate, populations

might have been so highly differentiated that correla-

tion between adjacent populations vanished. In both

migration models, selfing had little effect, except with

the highest migration rate and in LR, where it increased

the rate of false positives, presumably by increasing
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within-population autocorrelation (Fig. S3, Supporting

Information).

Regime of reproduction. Selfing appeared to have several

effects on the performance of most tests, and some

effects were quite drastic. The interplay between sev-

eral interacting factors makes it difficult to decipher

the mechanisms involved, but we can suggest several

effects that are likely to occur in real-life applications.

As we sampled both alleles per individual, and selfing

has the property of increasing homozygosity, we

expect that the effect of sampling modes will shift in

data sets generated under selfing, with sampling

modes with more samples being more efficient. How-

ever, this is not a major feature of our results, except

for CWDRP, for which the effect of sampling modes

was clearly opposite with allogamy with respect to sel-

fing models (Fig. 6). With the exception of CWDRP

with non-island models, selfing tended to increase the

rates of false positives, but not necessarily much and

chiefly with correlation-based methods. This could be

a consequence of the increase in genetic variance

between populations caused by a decrease in effective

population size. Finally, rather striking losses of power

were observed. In the case of FLK and VDB particu-

larly,

we mentioned possible explanations earlier. The case

of all differentiation-based methods in the IM (Fig. 4,

bottom-left panel) is remarkable, despite good resis-

tance by BN. The explanation might also be the

decrease in effective population sizes and, hence, in

the increase in relative between-population differentia-

tion. The detection of outliers is based on the compari-

son of candidate loci with a distribution based on

neutral loci. Whenever the basal level of differentiation

is high, it will be obviously more difficult to detect

outliers. The interaction between high levels of differ-

entiation and selfing or other situations with low effec-

tive population size must therefore be dealt with.

Sampling schemes. Results obtained under the sampling

scheme with many populations (S2) were generally bet-

ter than those obtained with the sampling schemes with

many samples per population (S3–5) in terms of both

false and true positives. For LR, the sample including 100

populations with only one sample per population (S1)

logically provided the best results. However, this

sampling scheme is only applicable with the LR method.

In some cases, however, samples with more populations

enabled a decrease in false positive rates, probably due

to more accurate estimation of allele frequency. There

were a few cases in which S3 produced far fewer false

positives than S2 (with FLK). With correlation-based

methods, more populations are expected to result in

better performances. Indeed, although more within-

population samples allow better estimation of allele

frequencies, investigating fewer populations makes the

analysis more sensitive to high between-population vari-

ance. This is likely to be crucial with high rates of differ-

entiation between populations (for example in the case of

selfing), where individuals within populations are likely

to be redundant. In that case, sampling a few individuals

per population and many populations would allow a

good estimate of overall allele frequency. To control for

false positives with correlation-based methods, it would

be wise to select a sampling scheme that avoids con-

founding autocorrelation effects, for example, by sam-

pling distant populations or by investigating several

unrelated environmental gradients (Poncet et al. 2010).

Conclusion

Our analysis revealed the effects of different biological

and methodological factors on the performance of sev-

eral methods used to detect natural selection. It would

be impossible to address all possible combinations of

factors, and our conclusions are necessarily limited to

the demographic models, the level of differentiation

and the form of selection we addressed. It should be

noted that a wide range of phenomena exceeding the

demographic factors we investigated in this study are

likely to cause a correlation between genetic variation

and environmental variables without direct selection.

Examples include isolation by distance (Vasem€agi

2006), interference between hitchhiking and structur-

ation (Bierne 2011), coupling of incompatibility factors

with dispersion barriers (Bierne et al. 2011) and geno-

mic variation in the recombination rate (Roesti et al.

2012), among many others. For a further discussion of

possible confounding factors and possible solutions,

see Barrett & Hoekstra (2011). Nevertheless, general

conclusions can be drawn from our analysis and pre-

vious similar studies. First, it is essential to clearly

identify the hypotheses underlying statistical tests

before applying them to data sets and to ensure that

the data match these hypotheses. It should be noted

that correlation-based methods can be very sensitive

to genetic correlations between or within populations

when these are not accounted for. LR and GEE run

very fast, which is a great advantage in the current

context of data generation techniques. However, these

advantages come with the drawback of a high risk of

spurious associations. Controlling for population struc-

ture is a prerequisite and should be combined with an

efficient way to control for false positives (typically

using control loci). Differentiation-based methods have

the advantage of accommodating complex population

history and structure when these are known, and they
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do not require environmental data. The low rate of

false positives of some of the methods (even when the

model does not exactly match reality) is also an

advantage. Our results highlight the benefits of apply-

ing different methods jointly or serially. For example,

Manel et al. (2009) used a correlation-based method to

validate loci detected using differentiation-based meth-

ods. As we intended to examine the intrinsic proper-

ties of tests, we have not employed an FDR approach

(Benjamini & Hochberg 1995), but this would be

advisable for most applications, especially data sets

with many markers.

In conclusion, our results allow us to formulate

general guidelines for selecting a method to detect

selection:

1 Differentiation-based methods have lower false posi-

tive rates but (with some exceptions) have the disad-

vantage of being rather time-consuming. They are

less powerful than correlation-based methods but still

perform well in detecting strong instances of selec-

tion.

2 As a corollary, the results of correlation-based meth-

ods should be interpreted with caution, especially in

situations that lead to between-population correla-

tions. In such case, recently developed statistical tools

accounting for underlying correlation structure are

recommended.

3 It is better to sample a few individuals in many pop-

ulations than many individuals in a few populations.

We found that eight samples per population are suffi-

cient, whereas in real-life applications, 10 or more are

preferable. However, the BN method is robust to the

decrease in the number of populations. With the LR

method, it is clearly better to sample only one indi-

vidual per location.

4 Under allogamy and the IM, all methods are efficient

and comparable.

5 Under allogamy and the stepping stone or the HM,

differentiation-based methods are better thanks to

their lower rate of false positives (FG is best).

6 Under selfing and the IM, the best option is to

choose LR with sample S1 (one individual per popu-

lation).

7 Under selfing and the stepping stone or the HM, the

best methods are LR with S1, BN with S3 (few

populations) and FG with S2 (many populations).
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